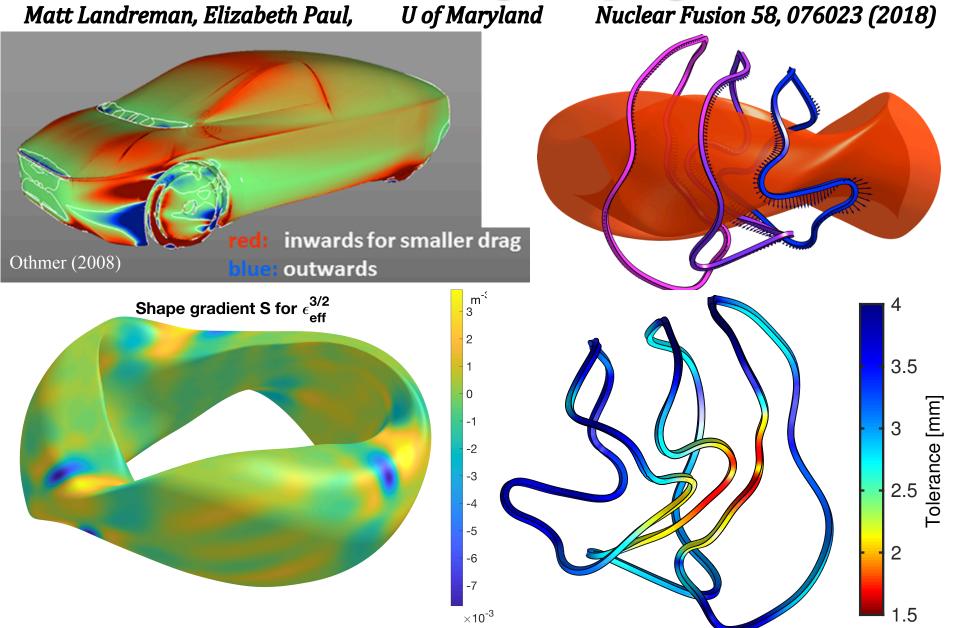
Understanding local sensitivity & tolerances of stellarators using shape gradients

Matt Landreman, Elizabeth Paul,



The shape gradient is a new (to us) way to think about derivatives involving shapes.

- Derivatives involving shapes are central to stellarator optimization.
- These derivatives also encode tolerances, which have been a leading driver of cost:

"The largest driver of the project cost growth were the accuracy requirements." [Strykowsky et al, *Engineering Cost & Schedule Lessons Learned on NCSX*, (2009)]

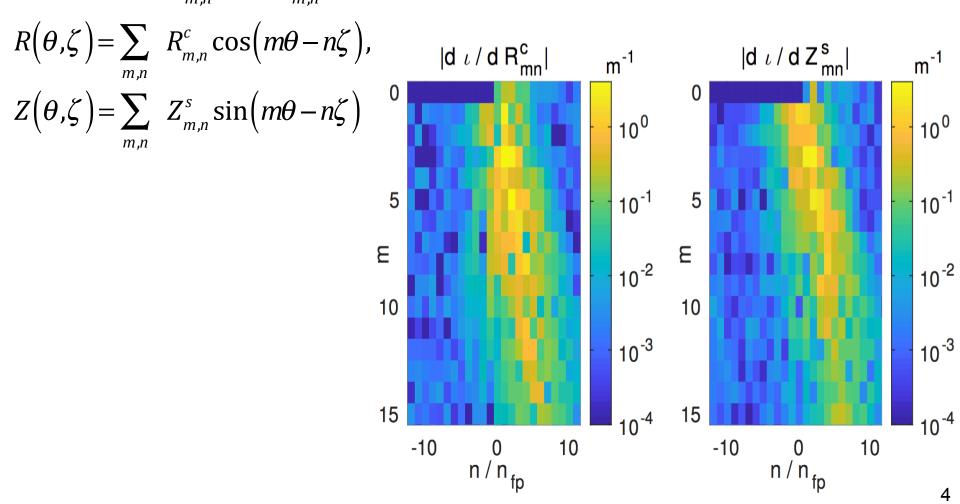
- Compared to 'parameter derivatives', shape gradients have 2 advantages:
 - Spatially local
 - Independent of parameterization

Understanding local sensitivity of stellarators using shape gradients

- 2 ways to represent derivatives: parameter derivatives vs. shape gradients.
- Computing shape gradients from parameter derivatives (e.g. STELLOPT)
- Examples
 - Rotational transform
 - Neoclassical transport
 - Coil-plasma distance
- Coil tolerances
- Magnetic sensitivity and tolerances

Let f denote any figure of merit, e.g. ι , neoclassical transport, etc.

Parameter derivatives: Example: $\partial f / \partial R_{m,n}^c$ and $\partial f / \partial Z_{m,n}^s$ where $R_{m,n}^c$ and $Z_{m,n}^s$ parameterize the plasma boundary shape:



Let f denote any figure of merit, e.g. ι , neoclassical transport, etc.

Parameter derivatives: Example: $\partial f / \partial R_{m,n}^c$ and $\partial f / \partial Z_{m,n}^s$ where $R_{m,n}^c$ and $Z_{m,n}^s$ parameterize the plasma boundary shape:

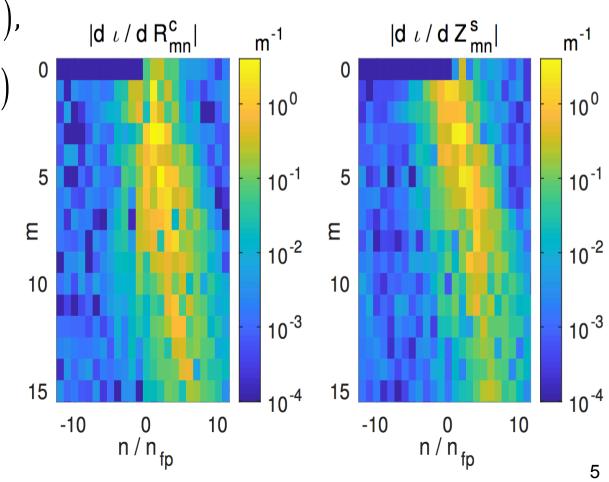
$$R(\theta,\zeta) = \sum_{m,n} R_{m,n}^{c} \cos(m\theta - n\zeta),$$

$$Z(\theta,\zeta) = \sum_{m,n} Z_{m,n}^{s} \sin(m\theta - n\zeta)$$

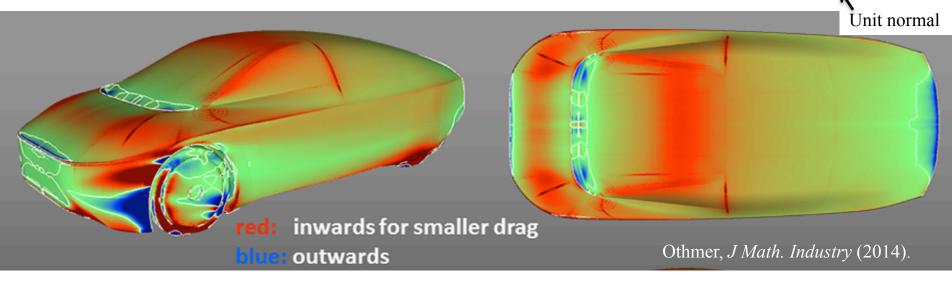
- Successfully used in STELLOPT to design NCSX, etc.
- Computable by finite differencing any code.

But,

- Not unique: coordinatedependent,
- Nonlocal: awkward for engineering.

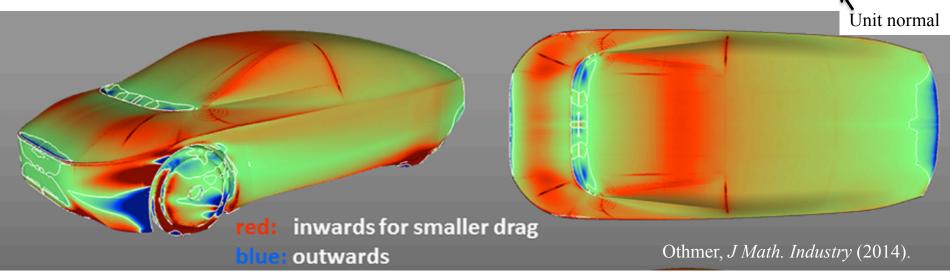


Shape gradients: For surfaces, *S* where $\delta f = \int d^2a (\delta \mathbf{r} \cdot \mathbf{n}) S$



- Local (real-space, not Fourier-space). More useful for engineering.
- Independent of coordinates used to parameterize surface.
- May provide different insight than parameter derivatives.

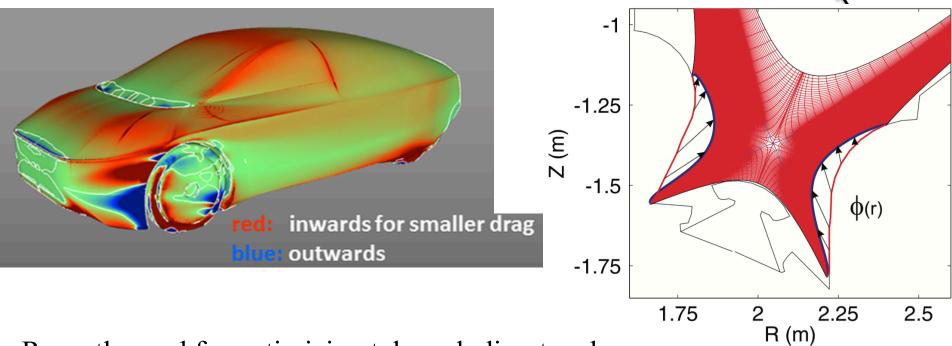
Shape gradients: For surfaces, *S* where $\delta f = \int d^2a (\delta \mathbf{r} \cdot \mathbf{n}) S$



- Local (real-space, not Fourier-space). More useful for engineering.
- Independent of coordinates used to parameterize surface.
- May provide different insight than parameter derivatives.

For coils,
$$\mathbf{S}_k$$
 where $\delta f = \sum_{\text{coils } k} \int d\ell \ \delta \mathbf{r} \cdot \mathbf{S}_k$, and $\mathbf{S}_k \cdot \frac{\partial \mathbf{r}}{\partial \ell} = 0$.

Shape gradients: For surfaces, S where $\delta f = \int d^2a (\delta \mathbf{r} \cdot \mathbf{n}) S$



Recently used for optimizing tokamak divertor shapes:

- W. Dekeyser, Ph.D. thesis, KU Leuven (2014).
- W. Dekeyser et al, Nucl. Fusion 54, 073022 (2014).
- M. Baelmans, et al, *Nucl. Fusion* 57, 036022 (2017).

The shape gradient representation can be expected to exist for many important shape functionals.

1D:

Derivative of a function of *n* numbers $f(r_1, r_2, ..., r_n)$:

$$\delta f = \sum_{j=1}^{n} \frac{\partial f}{\partial r_{i}} \delta r_{j}$$

$$n \to \infty$$
 limit: $f = f \left[r(\ell) \right]$, $\delta f = \int d\ell \frac{\delta f}{\underline{\delta r}} \delta r$

This is an instance of the Riesz representation theorem: *Any linear operator can be written as an inner product with some element of the appropriate space.*

In some cases, shape gradients can be computed analytically.

Integrals over a curve:

If
$$f[C] = \int_C d\ell \, Q$$
 for some $Q(\mathbf{r})$ and space curve C , $\Rightarrow \delta f = \int_C d\ell \, \delta \mathbf{r} \cdot \left[(\ddot{\mathbf{I}} - \mathbf{t} \mathbf{t}) \cdot \nabla Q - Q \kappa \mathbf{n} \right]$ where $\kappa = \text{curvature}$, $\mathbf{t} = \text{tangent}$.

Integrals over a surface:

If
$$f[\partial\Omega] = \int_{\partial\Omega} d^2a \, Q$$
 for some $Q(\mathbf{r})$ and surface $\partial\Omega$,
 $\Rightarrow \delta f = \int_{\partial\Omega} d^2a \left(\delta \mathbf{r} \cdot \mathbf{n}\right) \left(\mathbf{n} \cdot \nabla Q - 2QH\right)$
where $H =$ mean curvature.

Understanding local sensitivity of stellarators using shape gradients

- 2 ways to represent derivatives: parameter derivatives vs. shape gradients.
- Computing shape gradients from parameter derivatives (e.g. STELLOPT)
- Examples
 - Rotational transform
 - Neoclassical transport
 - Coil-plasma distance
- Coil tolerances
- Magnetic sensitivity and tolerances

Previously, shape gradients have usually been computed using adjoint methods.

- An adjoint equation, when available, gives the shape gradient (representing all possible shape perturbations) at the cost of ~ 1 regular solve.
- Then, the shape gradient is very efficient for shape optimization:

Choose
$$\delta \mathbf{r} = -\varepsilon S \mathbf{n} \Rightarrow \delta f = -\varepsilon \int d^2 a \, S^2 < 0$$
.
Step size $\varepsilon > 0$

- However, adjoint methods require analytic work & code development for every target.
- Here, instead, we show how to compute shape gradients from any code with little extra work.

Coils: Discretize coil shapes:

$$X(\vartheta) = X_0^c + \sum_{m=1}^{\infty} \left[X_m^c \cos(m\vartheta) + X_m^s \sin(m\vartheta) \right] & \& Y, Z$$

Parameters p_j are $\left\{X_m^c, X_m^s, Y_m^c, Y_m^s, Z_m^c, Z_m^s\right\}$.

Compute $\partial f / \partial p_i$ using finite differences, e.g. STELLOPT.

Coils: Discretize coil shapes:

$$X(\vartheta) = X_0^c + \sum_{m=1}^{c} \left[X_m^c \cos(m\vartheta) + X_m^s \sin(m\vartheta) \right] & \& Y, Z$$

Parameters p_i are $\left\{ X_m^c, X_m^s, Y_m^c, Y_m^s, Z_m^c, Z_m^s \right\}$.

Compute $\partial f / \partial p_i$ using finite differences, e.g. STELLOPT.

Discretize shape gradient:

$$S_{X}(\vartheta) = S_{X,0}^{c} + \sum_{m=1}^{\infty} \left[S_{X,m}^{c} \cos(m\vartheta) + S_{X,m}^{s} \sin(m\vartheta) \right] & \& S_{Y}, S_{Z}$$

Coils: Discretize coil shapes:

$$X(\vartheta) = X_0^c + \sum_{m=1}^{\infty} \left[X_m^c \cos(m\vartheta) + X_m^s \sin(m\vartheta) \right]$$

Parameters p_j are $\left\{X_m^c, X_m^s, Y_m^c, Y_m^s, Z_m^c, Z_m^s\right\}$.

Compute $\partial f / \partial p_i$ using finite differences, e.g. STELLOPT.

Discretize shape gradient:

$$S_{X}(\vartheta) = S_{X,0}^{c} + \sum_{m=1}^{\infty} \left[S_{X,m}^{c} \cos(m\vartheta) + S_{X,m}^{s} \sin(m\vartheta) \right] & \& S_{Y}, S_{Z}$$

$$\int d\ell \, \delta \mathbf{r} \cdot \mathbf{S} = \delta f \qquad \Rightarrow \qquad \text{Solve } \int d\ell \, \frac{\partial \mathbf{r}}{\partial p_j} \cdot \mathbf{S} = \frac{\partial f}{\partial p_j} \text{ for } \mathbf{S}.$$

(Square linear system)

& Y, Z

Coils: Discretize coil shapes:

$$X(\vartheta) = X_0^c + \sum_{m=1}^{\infty} \left[X_m^c \cos(m\vartheta) + X_m^s \sin(m\vartheta) \right]$$

& Y, Z

Parameters p_j are $\left\{X_m^c, X_m^s, Y_m^c, Y_m^s, Z_m^c, Z_m^s\right\}$.

Compute $\partial f / \partial p_i$ using finite differences, e.g. STELLOPT.

Discretize shape gradient:

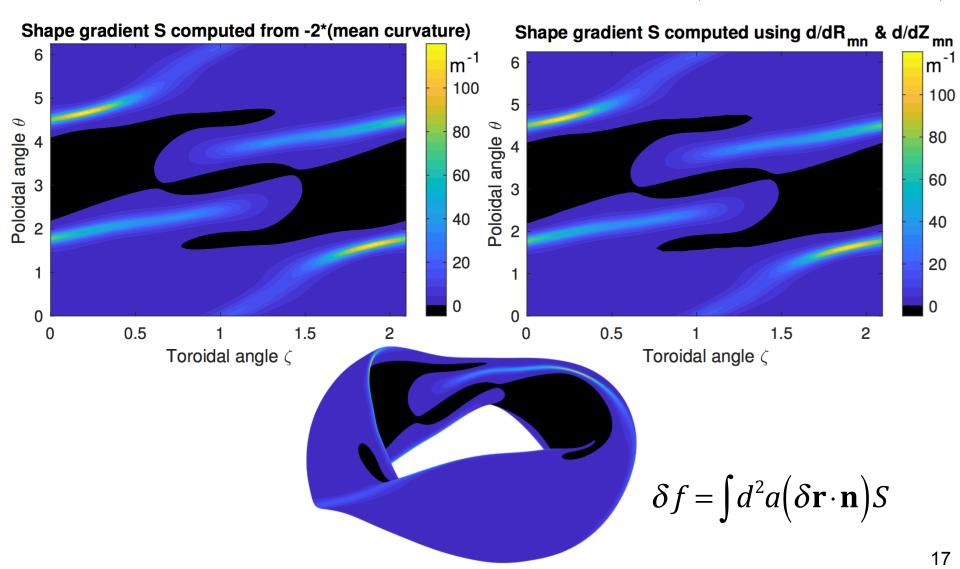
$$S_{X}(\vartheta) = S_{X,0}^{c} + \sum_{m=1}^{\infty} \left[S_{X,m}^{c} \cos(m\vartheta) + S_{X,m}^{s} \sin(m\vartheta) \right] & \& S_{Y}, S_{Z}$$

$$\int d\ell \, \delta \mathbf{r} \cdot \mathbf{S} = \delta f \quad \Rightarrow \quad \text{Solve } \int d\ell \, \frac{\partial \mathbf{r}}{\partial p_i} \cdot \mathbf{S} = \frac{\partial f}{\partial p_i} \text{ for } \mathbf{S}.$$

Similar procedure for boundary surface.

The algorithm for computing shape gradients can be verified by comparison to analytic theory.

Consider f = area. Analytic result: $S = -2 \times (\text{mean curvature})$



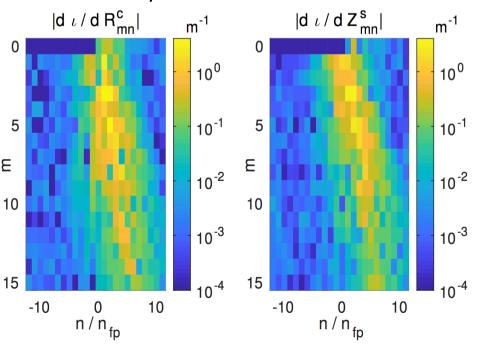
Understanding local sensitivity of stellarators using shape gradients

- 2 ways to represent derivatives: parameter derivatives vs. shape gradients.
- Computing shape gradients from parameter derivatives (e.g. STELLOPT)
- Examples
 - Rotational transform
 - Neoclassical transport
 - Coil-plasma distance
- Coil tolerances
- Magnetic sensitivity and tolerances

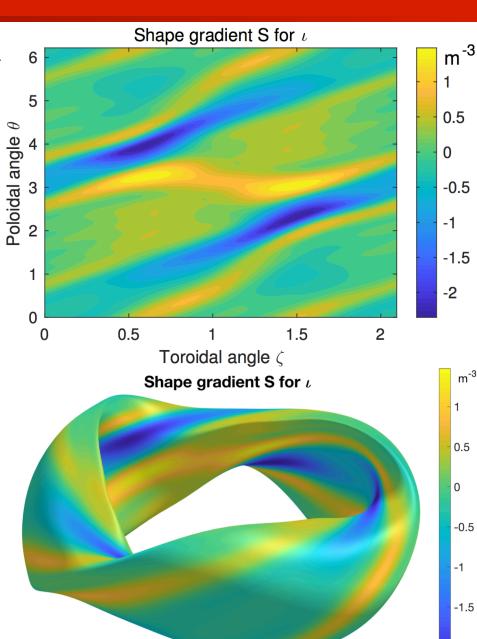
Example: Rotational transform at r/a=0.5

Shape gradient for boundary surface:

Parameter derivatives from STELLOPT/VMEC:

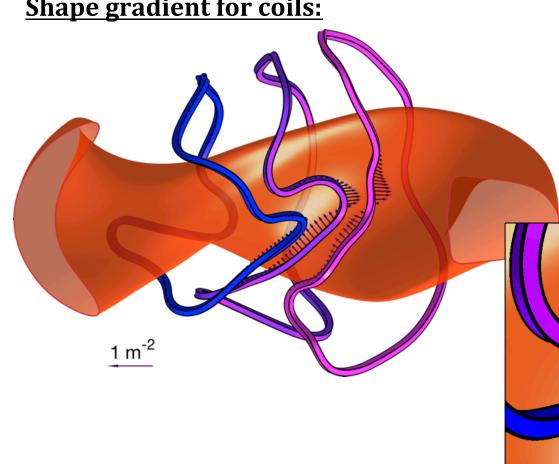


$$\delta f = \int d^2 a (\delta \mathbf{r} \cdot \mathbf{n}) S$$



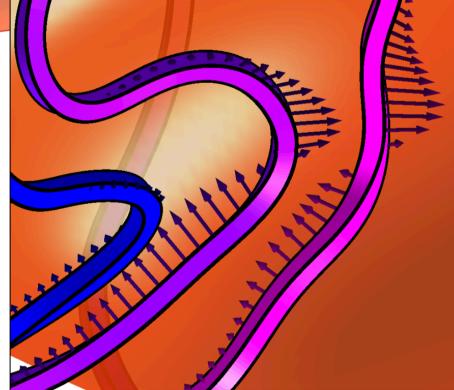
Example: Rotational transform at r/a=0.5

Shape gradient for coils:



Arrows show S_{ν} where

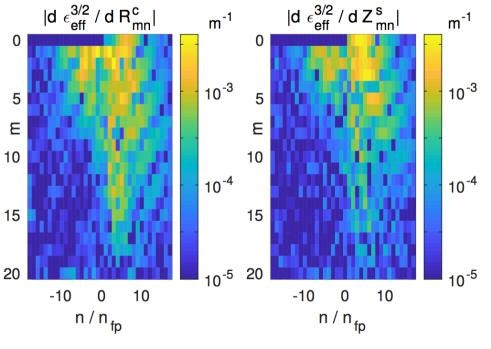
$$\delta f = \sum_{\text{coils } k} \int d\ell \, \, \delta \mathbf{r} \cdot \mathbf{S}_k.$$



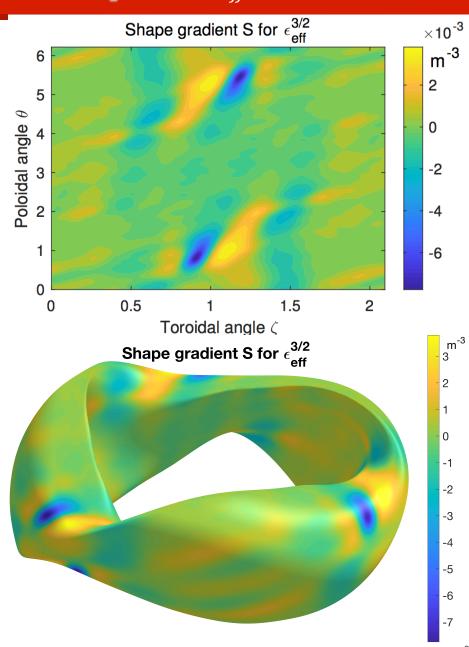
Example: Neoclassical transport $\varepsilon_{eff}^{3/2}$ at r/a=0.5

Shape gradient for boundary surface:

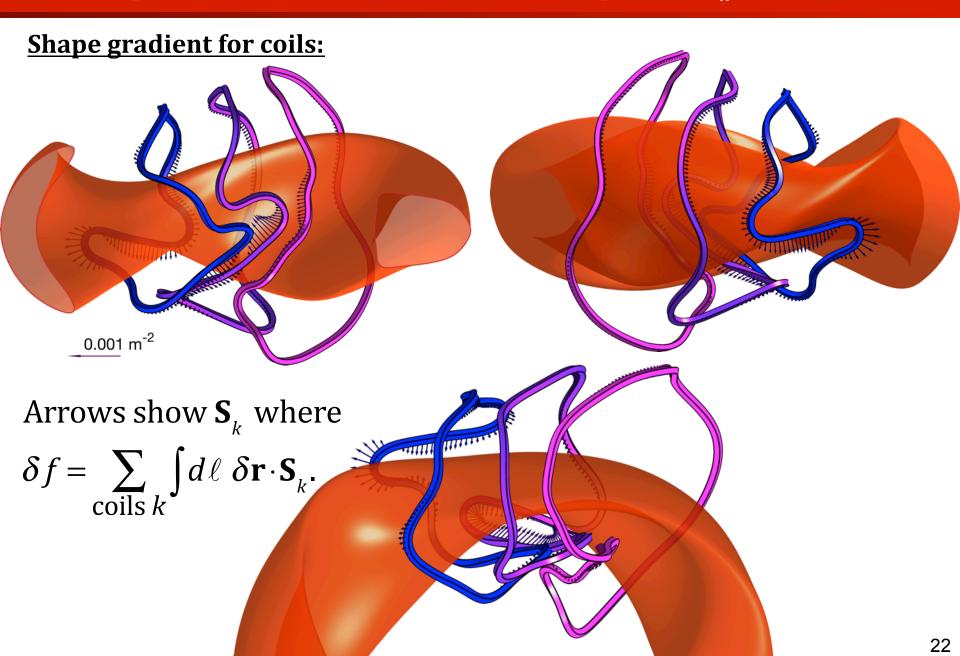
Parameter derivatives from STELLOPT/VMEC/NEO:



$$\delta f = \int d^2 a \Big(\delta \mathbf{r} \cdot \mathbf{n} \Big) S$$

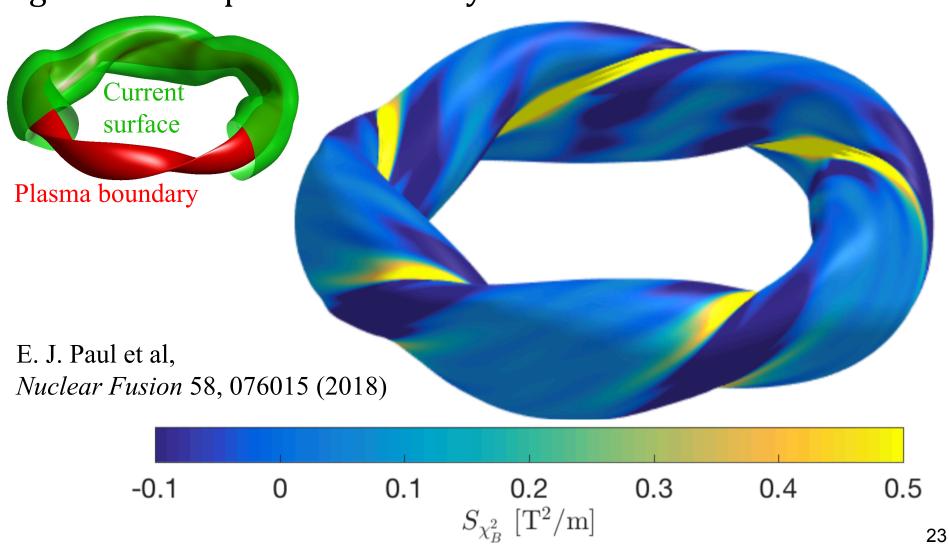


Example: Neoclassical transport $arepsilon_{\it eff}^{ m 3/2}$ at r/a=0.5



The shape gradient can show where coils must be close to the plasma.

Shape gradient on a current surface for $f = \int d^2a (\mathbf{B} \cdot \mathbf{n})^2$ given a fixed plasma boundary



Understanding local sensitivity of stellarators using shape gradients

- 2 ways to represent derivatives: parameter derivatives vs. shape gradients.
- Computing shape gradients from parameter derivatives (e.g. STELLOPT)
- Examples
 - Rotational transform
 - Neoclassical transport
 - Coil-plasma distance
- Coil tolerances
- Magnetic sensitivity and tolerances

Coil tolerances can be computed from the shape gradient.

Choose an acceptable Δf & any weight $w(\ell) \ge 0$.

Let
$$T(\ell) = \frac{w(\ell) \Delta f}{\sum \int d\ell' w(\ell') |\mathbf{S}(\ell')|}$$
.

If
$$|\delta \mathbf{r}| \leq T$$
,

$$|\delta f| \leq \int d\ell |\mathbf{S} \cdot \delta \mathbf{r}| \leq \int d\ell |\mathbf{S}| |\delta \mathbf{r}| \leq \int d\ell |\mathbf{S}| T = \Delta f.$$

Coil tolerances can be computed from the shape gradient.

Choose an acceptable Δf & any weight $w(\ell) \ge 0$.

Let
$$T(\ell) = \frac{w(\ell) \Delta f}{\sum \int d\ell' w(\ell') |\mathbf{S}(\ell')|}$$
.

If $|\delta \mathbf{r}| \leq T$,

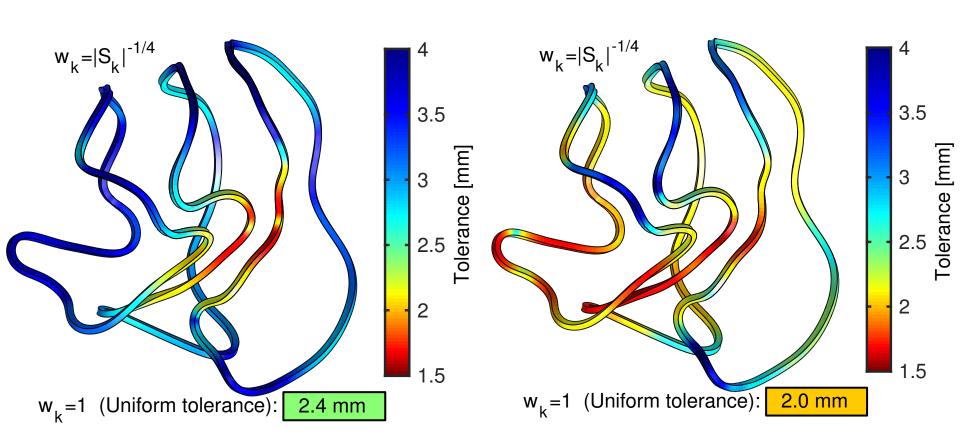
$$|\delta f| \leq \int d\ell |\mathbf{S} \cdot \delta \mathbf{r}| \leq \int d\ell |\mathbf{S}| |\delta \mathbf{r}| \leq \int d\ell |\mathbf{S}| T = \Delta f.$$

Conservative: a bound on the worst possible outcome.

Coil tolerances can be computed from the shape gradient.

$$\Delta t = 0.02$$

$$\Delta \varepsilon_{eff}^{3/2} = \varepsilon_{eff}^{3/2} / 2$$



Understanding local sensitivity of stellarators using shape gradients

- 2 ways to represent derivatives: parameter derivatives vs. shape gradients.
- Computing shape gradients from parameter derivatives (e.g. STELLOPT)
- Examples
 - Rotational transform
 - Neoclassical transport
 - Coil-plasma distance
- Coil tolerances
- Magnetic sensitivity and tolerances

A magnetic sensitivity S_B can be computed from the shape gradient.

Define
$$S_B$$
 by $\mathbf{B}_0 \cdot \nabla S_B = \langle S \rangle - S$.

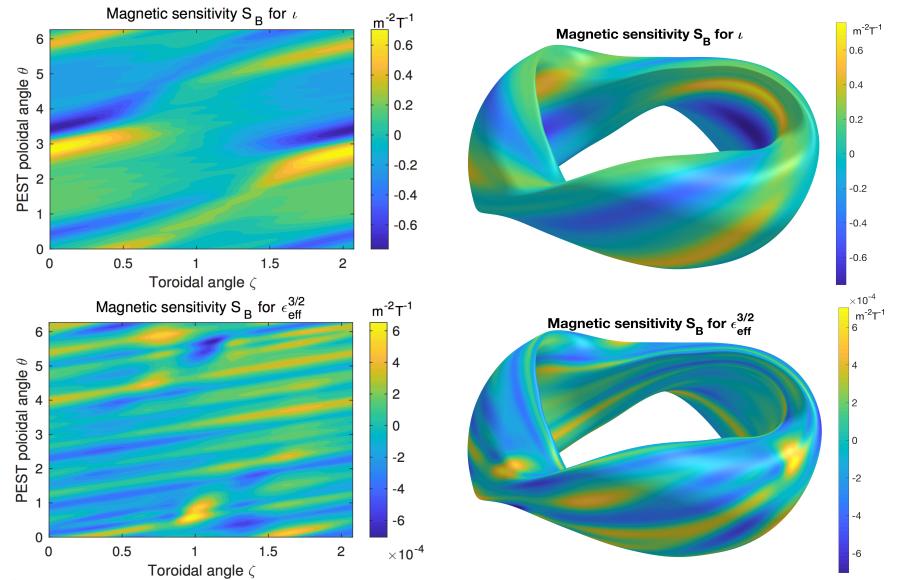
Substitute into
$$\delta f = \int d^2 a \, S \delta \mathbf{r} \cdot \mathbf{n}$$
.

After some algebra ...

$$\Rightarrow \delta f = \int d^2 a \, S_B \delta \mathbf{B} \cdot \mathbf{n}.$$

A magnetic sensitivity S_B can be computed from the shape gradient.

 $\delta f = \int d^2 a \, S_B \delta \mathbf{B} \cdot \mathbf{n}$ where $\mathbf{B}_0 \cdot \nabla S_B = \langle S \rangle - S$.



A magnetic tolerance T_B can be computed from the magnetic sensitivity.

Choose an acceptable Δf & any weight $W(\theta,\zeta) \ge 0$.

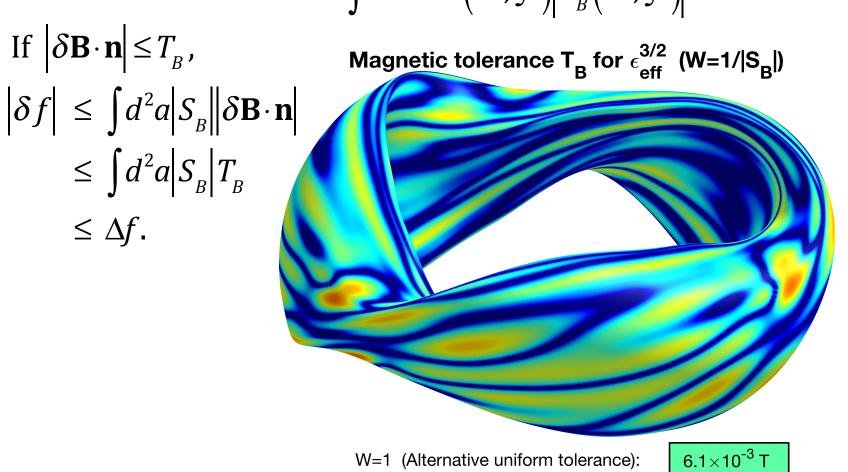
Let
$$T_B(\theta,\zeta) = \frac{W(\theta,\zeta) \Delta f}{\int d^2 a' \ W(\theta',\zeta') |S_B(\theta',\zeta')|}$$
.

If
$$|\delta \mathbf{B} \cdot \mathbf{n}| \le T_B$$
,
 $|\delta f| \le \int d^2 a |S_B| |\delta \mathbf{B} \cdot \mathbf{n}|$
 $\le \int d^2 a |S_B| T_B$
 $\le \Delta f$.

A magnetic tolerance T_B can be computed from the magnetic sensitivity.

Choose an acceptable Δf & any weight $W(\theta,\zeta) \ge 0$.

Let
$$T_B(\theta,\zeta) = \frac{W(\theta,\zeta) \Delta f}{\int d^2 a' \ W(\theta',\zeta') \left| S_B(\theta',\zeta') \right|}$$
.



Tesla 3×10⁻² 2×10⁻² 1×10⁻² 5×10⁻³ 4×10⁻³ 3×10⁻³

Conclusions

Shape gradients provide *local* sensitivity & tolerance information which can inform

- How accurately and rigidly the coils should be built,
- Where coils should be connected to support structure,
- Where sources of error fields like coil leads should be located, and enable systematic calculation of tolerances.

Future work:

- Shape gradients for integrability/islands,
- Direct calculation of shape gradients using adjoint methods,
- Target tolerances in STELLOPT to increase them.

Extra slides

Plasma boundary shape:

Parameters p_i are $\left\{R_{m,n}^c, Z_{m,n}^s\right\}$.

Compute $\frac{\partial f}{\partial p_j}$ using finite differences, e.g. STELLOPT. Discretize shape gradient: $S(\theta,\zeta) = \sum_{a} S_q \cos(m_q \theta - n_q \zeta)$

Plasma boundary shape:

Parameters p_i are $\left\{R_{m,n}^c, Z_{m,n}^s\right\}$.

Compute $\frac{\partial f}{\partial p_j}$ using finite differences, e.g. STELLOPT. Discretize shape gradient: $S(\theta,\zeta) = \sum_{a} S_q \cos(m_q \theta - n_q \zeta)$

$$\int d^2a \left(\delta \mathbf{r} \cdot \mathbf{n} \right) S = \delta f \quad \Rightarrow \quad \text{Solve } \int d^2a \frac{\partial \mathbf{r}}{\partial p_i} \cdot \mathbf{n} S = \frac{\partial f}{\partial p_i} \text{ for } S. \quad (1)$$

Linear system, not square.

Plasma boundary shape:

Parameters p_i are $\left\{R_{m,n}^c, Z_{m,n}^s\right\}$.

Compute $\frac{\partial f}{\partial p_j}$ using finite differences, e.g. STELLOPT. Discretize shape gradient: $S(\theta,\zeta) = \sum_{q} S_q \cos(m_q \theta - n_q \zeta)$

$$\int d^2a \left(\delta \mathbf{r} \cdot \mathbf{n} \right) S = \delta f \quad \Rightarrow \quad \text{Solve } \int d^2a \frac{\partial \mathbf{r}}{\partial p_j} \cdot \mathbf{n} S = \frac{\partial f}{\partial p_j} \text{ for } S. \quad (1)$$

Linear system, not square.

Check that $\frac{\partial f}{\partial p}$ is in the column space of matrix.

If so, (1) can be solved for S_a using pseudo-inverse of matrix.

Shape gradients have been used in other fields, mostly for shapes interacting with neutral fluid.

- O. Pironneau, *Optimal Shape Design for Elliptic Systems* (Springer-Verlag, 1984).
- K. K. Choi and N.-H. Kim, *Structural Sensitivity Analysis and Optimization*, vol 1 (Springer, 2005).
- M. C. Delfour and J.-P. Zolesio, *Shapes and Geometries: Metrics, Analysis, Differential Calculus, and Optimization*, 2nd ed. (SIAM, 2011).
- •

And recently for optimizing tokamak divertor shapes:

- W. Dekeyser, Ph.D. thesis, KU Leuven (2014).
- W. Dekeyser et al, *Nucl. Fusion* 54, 073022 (2014).
- M. Baelmans, et al, *Nucl. Fusion* 57, 036022 (2017).

The shape gradient representation can be expected to exist for many important shape functionals.

Derivative of a function of n numbers $f(r_1, r_2, ..., r_n)$: $\delta f = \sum_{j=1}^n \frac{\partial f}{\partial r_j} \delta r_j$ $n \to \infty \text{ limit: } f = f[r(\vartheta)], \quad \delta f = \int_0^{2\pi} d\vartheta \frac{\delta f}{\delta r} \delta r$

This is an instance of the *Riesz representation theorem*: any linear operator can be written as an inner product with some element of the appropriate space.

3D:
$$f = f\left[r_{X}(\vartheta), r_{Y}(\vartheta), r_{Z}(\vartheta)\right], \quad \delta f = \sum_{i=X,Y,Z} \int_{0}^{2\pi} d\vartheta \frac{\delta f}{\delta r_{i}} \delta r_{i}$$

Define $\mathbf{S} = \left|\frac{d\mathbf{r}}{d\vartheta}\right|^{-1} \left(\mathbf{e}_{X} \frac{\partial f}{\partial r_{Y}} + \mathbf{e}_{Y} \frac{\partial f}{\partial r_{Y}} + \mathbf{e}_{Z} \frac{\partial f}{\partial r_{Z}}\right) \quad \Rightarrow \quad \delta f = \int d\ell \, \mathbf{S} \cdot \delta \mathbf{r}$

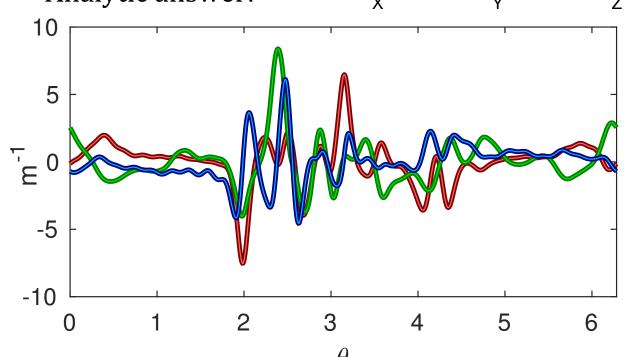
The algorithm for computing coil shape gradients can be verified by comparison to analytic theory.

Consider f = length. Analytic result: $\mathbf{S} = -\kappa \mathbf{n}$

(NCSX type-A coil)

Finite diff. method: $\longrightarrow S_x \longrightarrow S_y \longrightarrow S_7$

Analytic answer: $-\kappa n_X - \kappa n_Y - \kappa n_Z$



Shape gradient **S**:



'Direct method' to compute sensitivity map

$$\int d^{2}a \, S_{d} \, \frac{\partial \mathbf{r}}{\partial p_{k}} \cdot \mathbf{n} = \frac{\partial f}{\partial p_{k}} \qquad p_{k} \in \left\{ R_{mn}^{c}, Z_{mn}^{s} \right\}$$

$$\text{Unknowns} = S_{d} \text{ on a grid: } S_{d} \left(\theta_{j}, \zeta_{j} \right)$$

$$\int d^{2}a \, \frac{\partial \mathbf{r}}{\partial p_{k}} \cdot \mathbf{n} \qquad S_{d} = \left(\frac{\partial f}{\partial p_{k}} \right)$$

SVD: $\mathbf{D} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$ Solution by pseudo-inverse: $\mathbf{S} = \mathbf{V} \mathbf{\Sigma}^+ \mathbf{U}^T \mathbf{j}$

If \mathbf{j} is not in the column space of \mathbf{D} , then no sensitivity map exists.

 \Rightarrow Check whether $\mathbf{U}^T\mathbf{j}$ entries are small where Σ entries are small.

Fourier method to compute sensitivity map

$$\int d^{2}a \, S_{d} \, \frac{\partial \mathbf{r}}{\partial p_{k}} \cdot \mathbf{n} = \frac{\partial f}{\partial p_{k}} \qquad p_{k} \in \left\{ R_{mn}^{c}, Z_{mn}^{s} \right\} \qquad S_{d} = \sum_{m,n} S_{m,n} \cos\left(m\theta - n\zeta\right)$$

$$\underbrace{\left(\int d^{2}a \left(\frac{\partial \mathbf{r}}{\partial p_{k}} \cdot \mathbf{n}\right) \right)}_{\times \cos\left(m\theta - n\zeta\right)} \left(S_{m,n}\right) = \underbrace{\left(\frac{\partial f}{\partial p_{k}}\right)}_{\mathbf{S}}$$

$$\underbrace{\left(\int d^{2}a \left(\frac{\partial \mathbf{r}}{\partial p_{k}} \cdot \mathbf{n}\right) \right)}_{\mathbf{S}} \left(S_{m,n}\right) = \underbrace{\left(\frac{\partial f}{\partial p_{k}}\right)}_{\mathbf{S}}$$

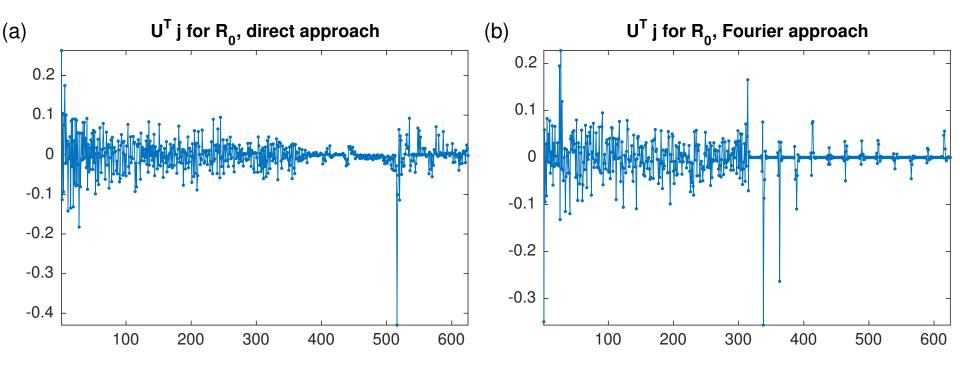
SVD: $\mathbf{D} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$ Solution by pseudo-inverse: $\mathbf{S} = \mathbf{V} \mathbf{\Sigma}^+ \mathbf{U}^T \mathbf{j}$

If **j** is not in the column space of **D**, then no sensitivity map exists.

 \Rightarrow Check whether $\mathbf{U}^T\mathbf{j}$ entries are small where Σ entries are small.

If f is coordinate-dependent, so a sensitivity map does not exist, the RHS is not in the column space.

Example:
$$f = R_0 = \frac{1}{(2\pi)^2} \int_0^{2\pi} d\theta \int_0^{2\pi} d\zeta \ R$$



A magnetic sensitivity map can be computed from the displacement sensitivity map.

$$\mathbf{B} = \mathbf{B}_{0} + \delta \mathbf{B}, \quad \psi = \psi_{0} + \delta \psi \qquad \mathbf{B} \cdot \nabla \psi = 0 \qquad \mathbf{B}_{0} \cdot \nabla \delta \psi + \delta \mathbf{B} \cdot \nabla \psi_{0} = 0$$

$$0 = d\psi = \delta \psi + \delta \mathbf{r} \cdot \nabla \psi_{0} \qquad \Rightarrow \qquad \delta \psi = -\delta \mathbf{r} \cdot \nabla \psi_{0}$$

$$\mathbf{B}_{0} \cdot \nabla \left(\delta \mathbf{r} \cdot \nabla \psi_{0} \right) = \delta \mathbf{B} \cdot \nabla \psi_{0}$$

Equivalent to the $\nabla \psi_0$ component of the MHD induction equation $\delta \mathbf{B} = \nabla \times (\delta \xi \times \mathbf{B}_0)$.

Define
$$S_B$$
 by $\mathbf{B}_0 \cdot \nabla S_B = \langle S_d \rangle - S_d$.

$$\delta f = \int d^{2}a \, S_{s} \, \delta \mathbf{r} \cdot \mathbf{n} = \left\langle S_{d} \right\rangle \int d^{2}a \, \delta \mathbf{r} \cdot \mathbf{n} - \int d^{2}a \, \delta \mathbf{r} \cdot \mathbf{n} \mathbf{B}_{0} \cdot \nabla S_{B}$$

$$= \left\langle S_{d} \right\rangle \delta V + \int d^{2}a \, \frac{S_{B}}{\left| \nabla \psi_{0} \right|} \mathbf{B}_{0} \cdot \nabla \left(\delta \mathbf{r} \cdot \nabla \psi_{0} \right)$$

$$\delta f = \left\langle S_{d} \right\rangle \delta V + \int d^{2}a \, S_{B} \delta \mathbf{B} \cdot \mathbf{n}$$

44